RELATIONSHIP OF ACOUSTIC WAVEFORMS TO MODE OF VENTILATION

F. Davidson, A Wong-Tse, R. Murphy - Brigham & Women's/Faulkner Hospitals, Faulkner Hospital, Boston, MA.

BACKGROUND

An underlying objective of our work has been to determine whether lung sound monitoring could be used to help assess the adequacy of ventilation.

Previously we noted that flow input at the mouth by a ventilator correlated with acoustic RMS measured with a multichannel lung sound analyzer.

While recording lung sounds from a patient on a ventilator we observed that the pattern of the waveform of the sounds appeared to vary with the mode of ventilation that the patient was receiving, as noted in the following figure. We wondered if this was reproducible, and, if so, what was the mechanism of this phenomenon.

OBJECTIVE

To study the correlation of ventilatory modes to lung sound patterns.

METHODS

Healthy volunteers inspired from Siemens Servo ventilators via a mouthpiece in volume control, pressure support and pressure regulated-volume control modes. Lung sounds were recorded using a multichannel lung sound analyzer (STG16) over the trachea and at 14 sites over the chest.

RESULTS

The following figures show the flow, pressure, and volume information as well as the simultaneously obtained acoustic data on a typical subject breathing from a ventilator in three different modes. The sound amplitude is lower when the subject was on PRVC than it was when the subject was on PS. It was lower still on VC.

This figure shows the change in breath sounds and vent parameters that occurred immediately upon changing from Volume Control to Pressure Support.

CONCLUSION

The different patterns of lung sounds observed when study subjects were switched from one mode of ventilation to another, appear to be due to differences in the flow rate delivered. The fact that the acoustic amplitude varies with flow, and that this can be detected at multiple chest sites simultaneously, suggests that lung sound analysis may be helpful in monitoring patients on ventilators.